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Abstract

Si mul at ed acoustic em ssion signals were induced in a thin-
wal | ed graphite/epoxy tube by neans of |ead breaks (Hsu-Neil sen
source). The tube is of simlar material and | ayup to be used by
NASA in fabricating the struts of Space Station Freedom The
resulting wavefornms were detected by broad band ul trasonic
transducers and digitized. Measurenents of the velocities of the
extensional and flexural nodes were nade for propagation
directions along the tube axis (0 degrees), around the tube
circunference (90 degrees) and at an angle of 45 degrees. These
velocities were found to be in agreenment with classical plate
t heory.
* Work supported by NASA Langl ey Research Center
** Mechani cal Engi neering student, University of Col orado,
Boul der, CO 80309-0427



Introduction

Graphi t e/ epoxy conposites, because of their high strength, high

stiffness, and |ight weight, have been chosen for fabrication of
the strut tubes of Space Station Freedom (SSF). Wile exposed to
t he harsh environnent of space, these tubes will be subjected to

hypervel ocity m croneteriod i npacts and | arge thernmal cycling,
anong ot her things. Thus, sonme nethod of nonitoring these tubes
is needed while SSF is in orbit. Oher critical parts which need
to be nonitored include the various fiber wapped pressure vessels
used for life support and fuel contai nment purposes.

Acoustic em ssion (AE) testing has been proposed as a technique
for nondestructively nonitoring these structures. The gl obal
nonitoring capability of AE makes it well suited for this purpose.
However, much information about the generation and propagation of
acoustic em ssion signals in conposites and conposite tubes is
needed before AE techniques can yield useful quantitative
i nformati on.

Gorman and Ziola [1] denonstrated that sinmulated AE signals in
flat conposite plates consist of the | owest order Lanb nodes.
These nodes are often referred to as plate nodes. The | owest
order symmetric node reduces to what is called the extensional
node in plate theory, while the |owest order anti-symetric node
reduces to the flexural node; these terns apply when the plate is
thin, that is, the wavelength is nuch greater than the thickness.
The signals were generated by pencil |ead breaks (al so known as
Hsu- Nei | sen sources). Gorman and Ziola [1] further showed that
real AE signals generated by transverse matrix cracking in a
conposi te propagate as pl ate nodes.

The propagation of Lanb and plate nodes in conposite plates has
been studi ed by nunerous investigators. Noiret and Roget [ 2]

i nvestigated the case of | ong wavel ength and | ow frequenci es.
Chimenti and Nayfeh [3, 4] have extensively studi ed Lanb node
propagation for ultrasonic materials characterization
measurenments. Veidt and Sayir [5] also characterized the materia



properties by neasuring the flexural plate node velocity.

Stiffler and Henneke [6] investigated plate nodes in an attenpt to
better understand the acousto-ultrasonic technique. A nunber of

i nvestigators have studi ed plate waves generated by the inpact of
a conposite including Mon [7], Chow [8], Sun and Lai [9], and
Rose and Mortiner [10].

Wth the exception of the study by Rose and Mortinmer [10] who
al so studi ed conposite shells or tubes, the previous research has
all focussed on the sinple geonetry of a flat plate. The majority
of practical structures, such as the strut tubes studied in this
research, are of nore conplicated geonetries. This research
denonstrates, however, that AE signals propagate in these thin-
wal | ed tubes as plate waves and that classical plate theory is
adequate for the prediction of their propagation velocities.

Gorman and Ziola [1] further pointed out that an understandi ng
of the propagation of plate nodes with different velocities is
needed to inprove the |l ocation capability of AE techniques. They
al so investigated the effect of source orientation by breaking
pencil |l eads on the surface and on the edge of the plate. An
interesting feature of these plate nodes was that the anplitude of
t he di spl acenent conponents of the different nodes was dependent
on the source orientation for the sinmulated AE sources. For the
conposite plates, if the | ead was broken on the surface, the
resulting waveform had a | arge out-of -pl ane conmponent for the
fl exural node and a much small er out-of-plane conponent for the
ext ensi onal node. For |ead breaks on the edge of the plate, the
out - of - pl ane conponent of the extensional node was nuch | arger
than that of the flexural node. Corman [11] showed sim|ar
results on alum num plates for surface and edge breaks.

Gorman and Prosser [12] additionally denonstrated that the
anpl i tudes of the displacenent conmponents of the extensional and
fl exural nodes were dependent on source orientation for
i nternedi ate angl es on alum num plates. This was acconplished by
machi ning angled slots into the plate on which the | ead was
broken. This feature of plate waves nmay be useful in determning
the type of source and its orientation for actual AE signals. For



exanpl e, the observed out-of -pl ane di spl acenent conponents of

pl ate waves due to transverse matri x cracking in the work of
Gorman and Ziola [1] had extensional anplitudes which were nuch

| arger than the flexural. This nmakes sense since transverse

mat ri x cracki ng should produce a source notion in the plane of the
pl ate generating a | arger extensional wave.

In this research, the out-of-plane conponents of AE signals
produced by | ead breaks on a graphite/epoxy tube of dinensions and
design to be used on SSF were neasured using broad band
transducers. The signals were shown to consi st of plate nodes.
The anplitudes of the nobdes were again shown to be affected by
source orientation by creating | ead breaks on the edge as well as
the surface of the tube. Since the specinmen being tested is
actually a tube geonetry, the plate wave predictions are only an
approxi mati on. However good agreenent m ght be expected at the
frequenci es neasured since the wavel engths are smaller than the
radius of curvature. Measurenents of the velocities of both nodes
were made for propagation along the tube (0 degrees), around the
tube circunference (90 degrees), and at 45 degrees. These
velocities were then conpared with velocities predicted from
classical plated theory using stiffness coefficients predicted by
| am nated pl ate theory and good agreenent was denonstrated.

Theory

Cl assical plate theory predicts three nodes of propagation in a
plate [13]. These are called the extensional, the in-plane shear
and the flexural nodes. This theory is based on the assunption of
pl ane stress in a thin plate where the wavelength is large in
conparison with the plate thickness. The in-plane shear node is
not detectabl e when using a transducer which is sensitive to out-
of - pl ane di spl acenent and is nounted on one of the faces of the
plate. Thus, it was not observed previously by Gorman and Ziola
[1] and has not been detected in this research. Therefore, the
theoretical treatnent of this node is not presented here.



Wil e classical theory predicts only an in-plane displacenent
conmponent for the extensional node, higher order theories predict
[14, 15] and experinmental nmeasurenents verify the existence of an
out - of - pl ane di spl acenent conponent for this node. This out-of-
pl ane conponent is due to the Poisson effect fromthe in-plane
notion and thus propagates at the sanme velocity. 1In a honbgeneous
isotropic material the extensional node propagates with a velocity
Ce Which is dispersionless:

=,/ —EB 1
T Ve o

where E is the Young's nodulus, v is Poisson's ratio, and p is the
densi ty.

In ani sotropic conposite naterials the extensional velocity is
dependent on the in-plane stiffness coefficients Aij’ i, ] =1, 2,
and 6 in the usual contracted notation. These are referred to the
| am nate axes, x and y, which are in the plane of the plate. The
Aij are defined as

,-h
A :j © dv gz (2)

where h is the thickness of the lamnate, z is the distance in the
t hi ckness direction fromthe m dplane of the | amnate, and (jf) are
the |amina stiffness coefficients for the k! I anina of the
conposite. For a +/- angle-ply symetric |lam nate, only four of
the in-plane stiffness coefficients are non-zero. These are Aqq,
A12, Ago, and Agg. The equations of motion for the in-plane

di spl acenents for a material with this synmetry are given by

Wi tney [16] as
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where u is the displacenent in the x direction and v is the
di spl acenent in the y direction.

These equations govern the propagati on of the extensional and
t he in-plane shear nodes. Except along symmetry directions of the
conposite, neither node will be pure extensional or pure shear.

I nstead, they will be quasi-extensional or quasi-shear nodes. The
node with its |argest conponent of particle displacenent in the
direction of propagation is the quasi-extensional node.

The di spersion behavior of the in-plane nodes is obtained by
substituting the displacenents for a plane wave propagating in an
arbitrary direction into the equations of notion. The
di spl acenents are

U = Agayel (0t - Kixx - ki) (5)
and
Vv = Agayel (0 - Kiax - Kl (6)

where Aj is the anplitude, o are the direction cosines of the
particle displacenments, o is the angular frequency, k is the
wavenunber, and |; are the direction cosines of the wave nornal.

Substitution of the displacenents and reducing terns yields

Al i + Assl 5 - phc? (A2 + Age)lxly ] PX} - (7)

(A2 + Ase) I xly Assl 2 + Agol § - phc2 | [y



where ¢ is the phase velocity and is equal to w/k. The nontrivial
solution for this equation occurs when the determ nant of the
coefficients is equal to zero which yields a quadratic in phcz.
The solution which predicts the faster velocity is that for the
guasi - ext ensi onal node.

For propagation along the x axis, the extensional node is a pure
node wave and its velocity is given by

- /A
Ce = oh . (8)

The extensional node is also pure node for propagation along the y
direction with the velocity given by

= P2
Ce = oh (9)

For propagation at 45 degrees between the x and y axes, the
solution yields a quasi-extensional node with a velocity given by

Ce:M(All+2%6+A22+ IR (10)
4ph

wher e

R = (A + 2Ac6 + App)? - 4(Aq1 + Ae) (Ao + Ags) + 4(Ap + Age)?  (11)

The second node of propagation is the flexural node. For
isotropic materials, this node has a velocity c; which is given by

Cf = D Yo (12)

where D is the bending stiffness defined by
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and w is the frequency in radians/sec. This node is dispersive
with the higher frequencies traveling at higher velocities.

For | am nated conposite materials, the flexural velocity is a
function of the bending stiffness coefficients (D|j)- These are
defined as

Z:n
Dij =f ? djk) z2 dz . (14)
z=-~"h

In a symmetric angle-ply conposite, the six coefficients Dyq, Djo,
Di1g: D22, Dog, and Dgg are nonzero. The equation of notion is
gi ven by

o*'w o*'w o*'w
D11674+4D16836 +2(D12+D66)6282
X x39y X209y (15)
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where wis the out-of-plane displacenent. The dispersion relation
i s agai n obtained by assum ng a plane wave of the form

W = Agei (ot - kix - kly) (16)

Again, the velocity is dispersive and is dependent on the
propagation direction. It is given by

C¢ = % \/6 (17)
V' ph

wher e
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Experiment

The tube studied in this research was AS4/ 976 graphitel/ epoxy
with a lam nate stacking sequence of [+/-10, +/-30, +/-10]5 . The
tube had di nensions of 4.5 nmeters in length, 0.0508 m in inner
di ameter, and 0.0035 m in wall thickness.

Penci| | ead breaks were used to sinulate acoustic em ssion
signals in the tube. The waves were detected using a 3.5 MHz
ul trasonic transducer (Pananetrics) with a dianmeter of 1.27 cm
Thi s transducer was used because of its flat frequency response in
the 20 to 500 kHz bandw dth of the observed signals. The detected
signals were anplified and filtered with a preanplifier (Physica
Acoustics Corporation 1220A) which had a 20 kHz high pass filter.
The signals were then digitized by a transient recorder (LeCroy
6810) operating at a 5 MHz sanpling rate with a 12 bit vertica
resolution. The digitized signals were stored on a conputer for
| ater analysis. Figure 1 shows a bl ock di agram of the
experinmental setup. A typical waveformat a source to receiver
di stance of 0.1524 m is shown in Figure 2 wherein the extensiona
and flexural waveform conponents are identified. The waveforns at
ot her source to receiver distances are simlar with the
extensional node arriving earlier because of its faster velocity.
The time between the extensional and flexural node arrivals
i ncreases with increasing distance of propagati on because of the
sl ower velocity of the flexural node.

Measurements of the extensional and flexural velocities were
made al ong the tube axis (0 degrees or x-direction), around the
tube circunference (90 degrees or y-direction), and at an angl e of
45 degrees to the axis of the tube. For neasurenent of the
velocity along a given direction, the transient recorder was
triggered by a sensor placed next to the source and the arrival



times of the extensional and flexural nodes were recorded for a

gi ven di stance of propagation. The receiving transducer was then
noved by a presel ected di stance al ong the desired propagation
direction and the | ead break repeated. Four to six points data
were taken for each node and direction of propagation. The val ues
of arrival time were then plotted against the trigger sensor to
recei ving sensor separation. A linear |east squares fit was
applied to the data and the sl ope was taken to be the velocity.

For the extensional wave, the earliest detected zero crossing
was used for the arrival tinme. However, because the flexural node
is dispersive, the arrival tine nust be neasured at a particul ar
frequency to allow a conparison with theory. |In addition,
classical plate theory agrees with exact theory only at | ow
frequencies. The | owest frequency in the data which was
unperturbed by refections was at about 50 kHz. As a rough
measurenent of the arrival tinme of this frequency, the tinme for
the arrival of the portion of the wave with a half cycle tinme of
10 usec. was used. This was used to conpute the velocity.

Signal s were al so obtai ned when the pencil |ead was broken on
the end of the tube. 1In this case the source notion was primarily
in-plane. This was done so that the out-of-plane displacenent
conmponents of the extensional and flexural notion could be
conpared with those where the source notion was normal to the
pl ane (surface breaks).

Results and Discussion

Table 1 shows the material properties of the | am na obtained
fromthe manufacturer's data sheet. Also in Table 1 are the
| am nated plate theory cal culations for the in-plane and bendi ng
stiffness coefficients for a |lamnated plate with the sane
stacki ng sequence as that of the tube.

The theoretical extensional and flexural velocity predictions
are given in Table 2 for the three different directions of



propagati on. Because of the dispersive nature of the flexura
node, its velocity prediction is expressed in ternms of the
frequency of the wave.

The arrival time versus distance plot for extensional waves
propagating along the O degree direction is shown in Figure 3.

The dotted line is a |least squares fit to the data. The
experinmental |y measured velocity values are also presented in
Table 2. The arrival tine versus distance plot for the 0 degree
direction of the 50 kHz conponent of the flexural wave is
presented in Figure 4. A least squares fit is indicated by the
dotted line. The theoretical velocity at this frequency and the
experinmental values are also given in Table 2. Good agreenment was
obt ai ned between theory and experinment except for the 45 degree
ext ensi onal node and the 90 degree flexural node, which need
further investigation.

A waveformdue to a | ead break on the edge of the tube is
presented in Figure 5. A conparison with Figure 2, which shows a
waveform for an identical distance of propagation but with the
| ead break on the surface of the tube, denonstrates the effect of
source orientation on the anplitudes of the plate waves. The edge
break produces an extensional wave with a | arge out-of-pl ane
di spl acenent conponent. The surface break al so produces a | arge
out - of - pl ane di spl acenent conponent, but in the flexural node. As
di scussed previously, this fact may be useful in obtaining source
information for actual sources in conposites.
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Table 1. Properties of AS4/976 Single Lam na and Lam nated Pl ate.

Single Lamina
AS4/ 976 (Fiberite)

Ex (GPa) Ey( GPa) Eg(GPa) Vy

147.6 9.65 3.2 0. 30

Laminated Plate Stiffness

[+/-10, +/-30, +/-10]¢
Lani nate thickness h = 3.528x10"3 m

I n-plane stiffness (MPa-m

A1 Ao A12 As6
433 44.6 50. 8 51. 6

Bendi ng stiffness (Pa- rr?)

D11 D22 D12 Ds6
463 43. 9 46. 7 47. 6

0.02

D16
27.9

p (Kg/ nP)
1560

Dog
4. 96



Tabl e 2.

Angl e
(degr ees)

0
45
90

Angl e

(degrees)
0
45
90

Angl e
(degrees)
0
45
90

Theoreti

cal and Experinental Plate Wave Vel ocities

Extensional Waves

Theoretical cg Experinmental cg
(knt's) (km's)
8. 87 8. 89
5.97 4.13
2.85 3.12

Flexural Waves

Theoretical c¢ dispersion relation

(ms) (f = frequency in Hz)
7.61 (f)l/2
6.67 (f)1/2
4.22 (f)l/2

Theoretical cf Experimental cg
(kmi's at 50 kHz) (kmi's at 50 kHz)
1.70 1.82
1.49 1.46
0.94 1.41
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Figure 1. Experinental setup.
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Figure 2. Typical waveform detected on graphite/epoxy tube from
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